Human Genetics and Plant Genomics: The long and the short of it

Michael Schatz

Simons Center for Quantitative Biology CSHL In-House Symposium XXVI November 20, 2012

Schatz Lab Overview

Outline

- I. De novo mutations in human diseases
 - I. Autism Spectrum Disorder
 - 2. Applications to ADHD & Tourette's

2. Plant Genome Assembly

- I. Long read single molecule sequencing
- 2. Other applications

Outline

- I. De novo mutations in human diseases
 - I. Autism Spectrum Disorder
 - 2. Applications to ADHD & Tourette's

2. Plant Genome Assembly

- I. Long read single molecule sequencing
- 2. Other applications

Unified Model of Autism

Sporadic Autism: 1 in 100

Prediction: De novo mutations of high penetrance contributes to autism, especially in low risk families with no history of autism.

Familial Autism: 90% concordance in twins

A unified genetic theory for sporadic and inherited autism Zhao et al. (2007) PNAS. 104(31)12831-12836.

Exome sequencing of the SSC

Sequencing of 343 families from the Simons Simplex Collection

- Parents plus one child with autism and one non-autistic sibling
- Enriched for higher-functioning individuals

Families prepared and captured together to minimize batch effects

- Exome-capture performed with NimbleGen SeqCap EZ Exome v2.0 targeting 36 Mb of the genome.
- ~80% of the target at >20x coverage with ~93bp reads

De novo gene disruptions in children on the autism spectrum lossifov et al. (2012) Neuron. 74:2 285-299

Exome Sequencing Pipeline

Variation Detection Complexity

True distribution

Analysis confounded by localized repeats: 30% of exons have at least a 10bp repeat

Scalpel: Haplotype Microassembly

G. Narzisi, D. Levy, I. Iossifov, J. Kendall, M. Wigler, M. Schatz

DNA sequence **micro-assembly** pipeline for accurate detection and validation of *de novo* mutations (SNPs, indels) within exome-capture data.

Features

- I. Combine mapping and assembly
- 2. Exhaustive search of haplotypes
- 3. De novo mutations

NRXN1 *de novo* SNP (auSSC12501 chr2:50724605)

Scalpel Pipeline

De novo mutation discovery and validation

Concept: Identify mutations not present in parents.

Challenge: Sequencing errors in the child or low coverage in parents lead to false positive de novos

Ref: ... TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...

- Father: ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...
- Mother: ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCCGGA...
- Sib: ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...
- Aut(1): ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...
- Aut(2): ...TCAGAACAGCTGGATGAGATCTTA<u>C</u>C----CC<u>G</u>GGAGATTGTCTTTGCCCCGGA...

6bp heterozygous deletion at chr13:25280526 ATP12A

De novo Genetics of Autism

- In 343 family quads so far, we see significant enrichment in de novo likely gene killers in the autistic kids
 - Overall rate basically I:I (432:396)
 - 2:1 enrichment in nonsense mutations
 - 2:1 enrichment in frameshift indels
 - 4:1 enrichment in splice-site mutations
 - Most de novo originate in the paternal line in an age-dependent manner (56:18 of the mutations that we could determine)
- Observe strong overlap with the 842 genes known to be associated with fragile X protein FMPR
 - Related to neuron development and synaptic plasticity
 - Also strong overlap with chromatin remodelers

De novo gene disruptions in children on the autism spectrum lossifov et al. (2012) Neuron. 74:2 285-299

Applications to ADHD & Tourette's

J. O'Rawe, G. Narzisi, M. Schatz, G. Lyon

- We believe similar mechanisms are involved in ADHD and Tourette's syndrome
 - Begun sequencing of families
 - Identify de novo and segregating mutations
- Cross analysis of GATK / SAMTools / SOAPindel / Scapel
 - High concordance on small events
 - Scalpel tends to identify more large events
 - Extensive wetlab validation in progress

Scapel Indel Discovery

Indel size distribution (length > 5 bp)

Sens: 93%

60

Sens: 86%

FDR: .19%

60

100

100

20

20

FDR: .026%

True distribution Scalpel 1000 1200 900 1000 800 700 Frequency 800 600 500 600 400 400 300 200 200 100 TTAATATTAA 0 0 -100 -60 -20 20 60 100 -100 -60 -20 Indel size Indel size SAMtools GATK 1200 1200 Sens: 88% 1000 1000 FDR: .64% Frequency 800 800 600 600 400

60

Frequency

Frequency

400

200 0

-100

-60

-20

Indel size

20

Detection of de novo mutations in exome-capture data using micro-assembly Narzisi et al. (2012) In preparation

100

200

0

-100

-60

-20

Indel size

Outline

- I. De novo mutations in human diseases
 - I. Autism Spectrum Disorder
 - 2. Applications to ADHD & Tourette's

2. Plant Genome Assembly

- I. Long read single molecule sequencing
- 2. Other applications

Genome Assembly Projects

Sacred lotus *Nelumbo nucifera* Gaertn. Ming, R, et al. (2012) Under Review

Known for religious significance, herbal medicines, seed longevity, and water repellency

Illumina + 454 sequencing

- 900 Mbp Genome Size
- Low Heterozygosity
- => Excellent assembly

Red Raspberry *Rubus ideaus L.* Price, J, et al. (2012) In prep

Member of the Rosacea family along with apple, pear, peach, strawberry.

Illumina + 454 sequencing

- 300 Mbp Genome Size
- High Heterozygosity
- => Good assembly

Wheat DD Aegilops tauschii Schatz/Ware/McCombie collab.

One of the most important cereal crops in the world, one of three ancestral species of allohexaploid bread wheat

Illumina sequencing

- 4.5 Gbp Genome Size
- High repeat content

=> Challenged assembly

Ingredients for a good assembly

High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly

Reads & mates must be longer than the repeats

- Short reads will have *false overlaps* forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

Errors obscure overlaps

- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly Schatz MC, Witkowski, McCombie, WR (2012) *Genome Biology*. 12:243

Hybrid Sequencing

Illumina Sequencing by Synthesis

High throughput (60Gbp/day) High accuracy (~99%) Short reads (~100bp) Pacific Biosciences SMRT Sequencing

Lower throughput (600Mbp/day) Lower accuracy (~85%) Long reads (2-5kbp+)

SMRT Sequencing Data

PacBio Pre-Correction Read Length

Match	83.7%
Insertions	11.5%
Deletions	3.4%
Mismatch	1.4%

TTGTAAGCAGTTGAAAAACTATGTGTGGGATTTAGAATAAAGAACATGAAAG
ATTATAAA-CAGTTGATCCATT-AGAAGA-AAACGCAAAAGGC <mark>G</mark> GCTAGG
CAACCTTGAATGTAATCGCACTTGAAGAACAAGATTTTATTCCGCGCCCG
TAACGAATCAAGATTCTGAAAACACAT-ATAACAACCTCCAAAA-CACAA
-AGGAGG <mark>GGAAAGGGGGG</mark> GAATATCT-ATAAAAGATTACAAATT <mark>A</mark> GA-TGA
ACT-AATTCACAATA-AATAACACTTTTA-ACAGAATTGAT-GGAA-GTT
TCGGAGAGATCCAAAACAATGGGC-ATCGCCTTTGA-GTTAC-AATCAAA
ATCCAGT <mark>G</mark> GAAAATATAATTTATGCAATCCAGGAACTTATTCACAATTAG

Sample of 100k reads aligned with BLASR requiring >100bp alignment

PacBio Error Correction

http://wgs-assembler.sf.net

- I. Correction Pipeline
 - I. Map short reads (SR) to long reads (LR)
 - 2. Trim LRs at coverage gaps
 - 3. Compute consensus for each LR

- 2. Error corrected reads can be easily assembled, aligned
 - I. Improves accuracy from ~85% to ~99%

Hybrid error correction and de novo assembly of single-molecule sequencing reads. Koren, S, Schatz, MC, et al. (2012) Nature Biotechnology. doi:10.1038/nbt.2280

SMRT-Assembly Results

Organism

Technology

Lambda NEB3011	Illumina 100X 200bp	48 502	48 492	1	48 492 / 48 492	48 492 / 48 492 (100%) *
(median: 727 max: 3 280)	PacBio PBcR 25X		48 440	1	48 444 / 48 444	48 444 / 48 440 (100%) *
E.coli K12	Illumina 100X 500bp	4 639 675	4 462 836	61	221 615 / 221 553	100 338 / 83 037 (82.76%) *
(median: 747 max: 3 068)	PacBio PBcR 18X		4 465 533	77	239 058 / 238 224	71 479 / 68 309 (95.57%) *
	Both 18X PacBio PBcR + Illumina 50X 500bp		4 576 046	65	238 272 / 238 224	93 048 / 89 431 (96.11%) *
E. coli C227-11	PacBio CCS 50X	5 504 407	4 917 717	76	249 515	100 322
(median: 1 217 max: 14 901)	PacBio 25X PBcR (corrected by 25X CCS)		5 207 946	80	357 234	98 774
	Both PacBio PBcR 25X + CCS 25X		5 269 158	39	647 362	227 302
	PacBio 50X PBcR (corrected by 50X CCS)		5 445 466	35	1 076 027	376 443
	Both PacBio PBcR 50X + CCS 25X		5 453 458	33	1 167 060	527 198
	Manually Corrected ALLORA Assembly9		5 452 251	23	653 382	402 041
S. cerevisiae S228c	Illumina 100X 300bp	12 157 105	11 034 156	192	266 528 / 227 714	73 871 / 49 254 (66.68%) *
(median: 674 max: 5 994)	PacBio PBcR 13X		11 110 420	224	224 478 / 217 704	62 898 / 54 633 (86.86%) *
	Both PacBio PBcR 13X + Illumina 50X 300bp		11 286 932	177	262 846 / 260 794	82 543 / 59 792 (72.44%) *
Melopsittacus undulatus	Illumina 194X (220/500/800 paired-end 2/5/10Kb mate-pairs)	1.23 Gbp	1 023 532 850	24 181	1 050 202	47 383
	454 15.4X (FLX + FLX Plus + 3/8/20Kbp paired-ends)		999 168 029	16 574	751 729	75 178
(median 997, max 13 079)	454 15.4X + PacBio PBcR 3.75X		1 071 356 415	15 081	1 238 843	99 573

Reference bp

Assembly bp # Contigs Max Contig Length

N50

Hybrid assembly results using error corrected PacBio reads Meets or beats Illumina-only or 454-only assembly in every case *** Also useful for transcriptome and CNV analysis ***

Preliminary Rice Assemblies

In collaboration with McCombie & Ware labs @ CSHL

Other Research Projects

High Performance Variant Detection And Interpretation

>168-fold speed up genotyping maize

Answering the demands of digital genomics Titmus, MA, Gurtowski, J, Schatz, MC (2012) *Concurrency and Computation: Practice and Experience* Analyzing Genomic Repeats and Sequencing Libraries

Pinpoint the regions we cant sequence with today's tech

Genomic Dark Matter Lee, H., Schatz, M.C. (2012) Bioinformatics. 28 (16): 2097-2105.

Merge different assemblies into a highaccuracy consensus

Fix mistakes and capture all the information

Improving Genome Assembly with Meta-assembly Wences, A, Schatz, M.C. (2012) *In preparation* Evaluate the limits of assembling human, wheat and other genomes

How long is long enough?

Assembly Complexity of Long Sequencing Reads Marcus S, Lee, H., Schatz, M.C. (2012) In preparation

Summary

I'm interested in answering biological questions by developing and applying novel algorithms and computational systems

- Interesting biological systems: human diseases, foods, biofuels
- Interesting biotechnology: new sequencing technologies
- Interesting computational systems: parallel & cloud technology
- Interesting algorithms: assembly, alignment, interpretation

Also extremely excited to teach the next generation of scientists in the WSBS, URP, and high school programs

Acknowledgements

Schatz Lab Giuseppe Narzisi Shoshana Marcus James Gurtowski Alejandro Wences Hayan Lee Rob Aboukhalil Mitch Bekritsky Charles Underwood **Rushil Gupta** Avijit Gupta Shishir Horane **Deepak Nettem** Varrun Ramani Piyush Kansal **Eric Biggers** Aspyn Palatnick

<u>CSHL</u> Hannon Lab Iossifov Lab Levy Lab Lippman Lab Lyon Lab Martienssen Lab McCombie Lab Ware Lab Wigler Lab

IT Department

<u>NBACC</u> Adam Phillippy Sergey Koren SFARE SIMONS FOUNDATION AUTISM RESEARCH INITIATIVE

National Human Genome Research Institute

Thank You!

http://schatzlab.cshl.edu/ @mike_schatz

